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The model proposed here for heat exchange in an undeformed fractured geothermal reser- 
voir takes into account the thermal resistance of the rock slabs constituting a stratum and 
heat exchange with the massif surrounding the stratum. 

The thermal conditions of a vertical geothermal fractured stratum under the conditions 
of nonisothermal filtering without allowance for the thermal resistance of the rock slabs 
was studied in [i]. A semi-analytic method of taking the heat loss in rock slabs into 
account was suggested in [2]. It was based on the assumption that the temperature in a rock 
slab along the normal to its surface varies as Tb(n , t) = (a + bn + cn2)exp(-n/Jab t) (n is 
the normal and a b is the thermal diffusivity of the slab). 

We consider the problem of determining the thermal conditions of a fractured horizontal 
geothermal stratum under the conditions of nonisothermal filtering in the following formula- 
tion. We introduce the x, y, z coordinate system so that the plane z = 0 would coincide 
with the top of the stratum. The thickness h of the stratum is assumed to be much less than 
that of the cap rock. In this case the problem is symmetric about the plane z = h/2. We 
assume that: 

i) the thickness of the stratum is much smaller than its dimensions in the xy plane and 
the filtering rate field is two-dimensional, i.e., there is no component of the rate along 
the z axis, perpendicular to the stratum; 

2) the heat exchange at the solid-liquid interface is so intense (Blot number Bi = ~Lb/ 

%b >> I, ~ is the coefficient of interphase heat transfer, L b is the characteristic size of 

the rock slab, and %b is the thermal conductivity of the slab material) that the temperature 

of the phases at the interface become equal almost instantaneously in comparison with the 
characteristic useful life of the stratum; 

3) the slabs of rock that constitute the stratum are in the form of regularly arranged 
parallelepipeds; 

4) conductive heat transfer in the massif enclosing the stratum in the direction of the 
filtering can be ignored; and 

5) the stratum is undeformable. 

The analysis of the problem is based on the equation of the heat balance of the filtering 
liquid: 

mc~---~+c~ uo--;+v~v. =Q~+mk. o-~r2+--+-- . ~ , 2  o2) (1) 

Here T is the temperature of the liquid; u and v are the components of the filtering rate; 
Qb is the source term responsible for the heat exchange of the liquid with the rock slabs; m 
is the porosity (fracturing); and %w and c w are the thermal conductivity and volume heat 
capacity of the liquid. 

Averaging (i) over z from 0 to h/2, we obtain 

mc~-&-+c~ u ~ + ~  =~+~X~ ~ -  +o7+ (2) 
z=O 
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(the bar pertains to the average value of the quantity and is omitted henceforth). 

The motion of the liquid is described by the Darcy law 

It = 
kr op k~ ov, 

~ (T) Ox ' V =  ~, (r) oy 
(3 )  

where p is the pressure; k e is the effective permeability of the isotropic stratum ([3]); 
and >(T) is the viscosity of the liquid. According to [4] 

248 

t* (T) = 241 '  10 ~ - 7  N'sec/ra2 �9 

The mass balance equation for a stratum opened by two wells with equal flow rates, one 
an extraction and a water injection well, has the form 

Ou &, Q (~3 ( x  - xm, y Yso) - 8 ( x  - Xsi, y - Ysi)). e - ; + ~ = ~  - 
(4) 

Here Xs0, Ys0 and Sxi , Ysi are the coordinates of the two-dimensional source and drain 

simulating the wells; Q is the well flow rate; and 6 is the delta function. 

Boundary conditions of the fourth kind are satisfied for z = 0: 

k O~ OT 
= T ,  ' 0-7 = r o l e  

(T r is the temperature of the enclosing massif; and Xr is the thermal conductivity). 

The heat flow from the massif is determined from the heat conduction equation 

Ot Oz 2 

( a  r i s  t h e  t h e r m a l  d i f f u s i v i t y )  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

(z, 0) = T0, L (0, t) = T (x, y, t). 

The source term in Eq. (2), averaged over the thickness of the stratum, is determined 
from the solution of the conjugate problem of heat conduction 

< (o+o eTo : ol 
0--7- = ab ~ 0~2 + - -  + 0~ 2 0% 2 ) 

- a / 2  < ~ < a / 2 ,  - b / 2  < q < b /2 ,  - c / 2  < ~ < c / 2 ,  T ~ ( ~ , r  I , ~ , 0 ) = T o ,  

T~ ( +-a/2,  rl, ~, t) = T~ (~, +_b/2, ~,, t) = Te (~, '1, +-c/2, t) = r (x,  y, t) 

(6) 

(T b is the temperature in the slab of rock). 

At an infinite distance from the wells the temperature of the liquid is T o during the 
entire filtering process and the filtering rate is zero. We assume that the temperature of 
the injected liquid T (Xsi , Ysi, t) = T s is established instantaneously at the boundary of 
the injection well. 

The solution of the boundary-value problem (6) has the form [5] 

e j, r~(~, 7, ~, t -~ )  [1 - f ( L  ~, ~, ~)] a~, (7) r ,  (~, n, ~, 0 = roY (L n, ~, 0 + 
0 

(_l)m+n+k+l 

m,n.k=l 

• cos ~. cos ~ " T  cos g ~ T  

~, = (2l - 1) ~ / 2 ,  l = n, m, k, ~,.~ =.4a~ [(~t./a) 2 + (g,~/b) 2 + (gk/c)2]. 
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Equation ( 7 )  indicates that the temperature gradient at the rock slab boundary $ = 
a/2 for slow heat-transfer processes is 

- E  ( ' '  7"0 -~ (.,  t) ~~ -or 7" (.., t) - ~ u ( . ,  t) -~ (. , ~) d~, 
0 ~,=a/2 

and the total heat flux across the indicated facet of the rock slab, reduced to a unit volume 
of slab (we omit the intermediate manipulations), is 

f f  c, . - '  
t OT~ ( a / 2 ,  T1, ~,, t) dqd~, -'- - T o  _ _  + ( 8 )  qo ( t) = ,~c - f f  -d ~ 

n .m.k=. l  ~tm~tk , 

+ 
n, m.  k= 1 P-mlJ'k ~nmk 

Differentiating the expression after the second summation sign in (8) with respect to 
t and disregarding the second derivative of the temperature with respect to time because of 
the assumption of a slow heat transfer, we finally have 

[ e0_  +0_k i - 2 ~ ~ ( T - T o ) e  - ~ ' " k ' - -  
a n.,n,k=i ~.mtXk Ot ~nmk " 

The total heat flux across the surface of the rock slab (qa(t) and qb(t) are the heat 
fluxes across the boundaries q = b/2 and ~ = c/2, respectively) 

Q (t) = 2 (q. (t) + qb (t) + q, (t)). ( 9 )  

The heat flux across the boundary between the enclosing massif and the stratum is 
determined from the solution of Eq. (5) with given boundary conditions: 

2kr ~.~Tzr 2 d'~rc% d f~  r (x" Y' x) - T~ di" q, = -- - - - - ~ .  = 
h h at v-~V=-i~ 

I z=O 0 �9 

For a flow heat transfer between the enclosing massif and the stratum we obtain [6] 

V- o . ) q,--='~ V --~"- / t--~-s + t o., ( io) 

(c r is the volume heat capacity of the material of the enclosing massif). 

The system of equations (2)-(4) with allowance for (9) and (i0) in dimensionless 
variables is reduced to 

c (O ~ + - ' g Z  § --g~y = ( 1 -  O) d (t) + m P e  --~x2 + + 

o-7 i~ o,) 

c (t) = m + ( l  - , , ,) ~ ,  

+ O ( ~ ( x - - x ~ o , y - y ~ o ) - 6 ( x - x a ,  y--y~i)) ,  

o / + ~  9 = ~ ( x -  x , , , y - y , t )  - 1 5 ( x - x , o , y - y , o ) ,  

- -  Op - -  Op 
u = -;~ ~ ,  v = - ; t  Oy' 

2 
p.n2 ke_~n,,,.kFo t 

d (t) = 8 (1 - m) r T~  ~ + Ft-~ 
. ,  m. k = 1 la.~m.u'k 

= 2 2 "~ 
- -  8 E e -~nmkFot  (1 + I,t,m, Fot) 

2 2 2 
m m, k = L lJ'n['tmP'k 

~,~ + ~.k ( a / a )  ~ + ~ ( a / c /  ~lnmk = 

+ Ft ~ 

(il) 
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(for Fo t > I the discussion can be limited to one term of the series in the expressions 
for c(t) and d(t)). 

The variables x and y in (ii) are related to the well separation L, the rate compo- 
nents are related to V = Q/(hL), the pressure to AP = Qg0/(hke), ~0 = g(To), and tile time 

to L/V = hL2/Q. The dimensionless temperature is 0 = (T - Ts)/AT, &T = T o - T s. 

The dimensionless criteria Fo and F, characterizing the heat exchange between rock slabs 
and the liquid and between the enclosing massif and the liquid have the form 

Fo = ~ hL---~2 

(~2)  2 Q ' 

The Peclet ntnmber Pe = Q/(awh) , Cbw = Cb/Cw and Crw 

ties for rock slabs). 

The viscosity ratio is 

~_ gO 

F=2e,~L aV -~h. 

= Cr/C w (c b are the volume heat: capabili- 

AT(0-1) 
-- 1 0 248 (133+T0) (133+Ts+SAT) 

The boundary conditions are O(x, y, 0) = I, 8(x, y, t) = i, 8p/Sn = 0 (at the boundary 

of the stratum, n is the normal to the boundary), and %(Xsi, Ysi, t) = 0. 

As a + 0 (when the size of the rock slabs is vanishingly small), i.e., as Fo § ~, we 

have c(t) + m + (i - m) ebw + Ft ~ and d(t) + Ft -~ In this case the system of equations 

(ii) corresponds to the system of equations of the homogeneous model of a porous stratum 
[6]. For Fo = 0, i.e, when the heat exchange does not occur between the rock slabs; and the 
liquid, c(t) = m + Ft ~ and d(t) = Ft -~ 

The fracturing of the stratum was determined in accordance with the assumption of a 
regular arrangement of the rock slabs, using the formula 

abc  
m = 1 - -  ,~v~NyN2 hhxh~ ' 

w h e r e  h x a n d  h y  a r e  t h e  s t r a t u m  d i m e n s i o n s  i n  t h e  x y  p l a n e ;  a n d  NxNyN z i s  t h e  n u m b e r  o f  r o c k  

s l a b s  i n  t h e  s t r a t u m  i n  t h e  c o o r d i n a t e  d i r e c t i o n s .  

Since (N z + l)s + Nza = h and so forth (if s is the fixed thickness of the cracks in the 
stratum), we have 

m = 1 - ( l  - s / h )  ( l  - s / h A ( l  - s//~y) 

(1 + s / a )  (l + s / b )  (1 + s / e )  " 

For a thin stratum (h << hx, hy) 

m =  [ - -  
l - s / h  

(1 + s / a )  (1 + s?b)  (1 + s / c )  ~ 

Moreover, if the rock slabs are thin plates (a << b, c), then 

| +  J h  
m - -  l + ~ s "  

The complete system of criteria for the problem under consideration contains eight param- 
eters (Fo, F, Pc, Cbw , a/h, a/b, a/c, and h/s) as well as dimensionless function ~(T0, Ts) of 

two dimensionless parameters. Obtaining the function t~ of interest to us (the time in which 

the dimensionless temperature in the development well drops to O = K) requires a large number 

of calculations and so the numerical analysis was carried out for a fixed value ebw = 0.4 
(which corresponds to the ratio of volume heat capacities of granite and water) and without 
taking into account the conductive heat transfer in the stratum (Pc >> i) for K = 0.9. More- 
over, we replaced the parameters a/b and a/c by one, a = a/b = a/c and assumed that T s = 10~ 
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and To = 50~ The ratio of the thickness of the stratum to that of the crack h/s = 104 and 
the ratio of the size of the rock slab in the z direction to the stratum thickness is a/h = 
0.01. The parameters Fo, F, and ~ were varied. 

The heat balance equation was solved by using an explicit conservative difference scheme 
without approximation of the convective term by the Ranchel scheme [7] to the first order of 
accuracy and the pressure equation was solved by the Gauss-Seidel iteration procedure. 

The values of the variables at the nodes of the computational net on the flow symmetry 
axis, i.e., lines joining the wells, were determined from the differnce equations, in which 
the values of the variables at the nodal points not in the computational region, were elimi- 
nated by using the symmetry relations. The temperature at the point where the developmental 
well was calculated as the weighted mean temperature (over the values of the liquid flow rate) 
at the four nearest half-nodes of the computational net. 

The computations were done on a 51 • 21 net with allowance for the flow symmetry. The 
computational region was a square with sides of length 3 in dimensionless units, which is 
entirely sufficient for the boundary conditions at the stratum boundary (they corresponded to 
the boundary conditions for an infinite stratum) not to affect the characteristics of the flow 
in the vicinity of the well. 

Figure i shows t0.9(F) for ~ << 1 (the rock slabs are thin plates). The stratum frac- 

turing m, according to (19), is 0.01. 

When Fo increases the effective volume heat capacity c(t) of a fractured reservoir in- 
creases, causing the heat exchange to slow down. The stratification of the curves according 
to values of Fo decreases as F increases and when F > 1 the thermal resistance of the rock 
slabs for Fo > 1 has virtually no effect on the thermal conditions of the stratum, which is 
determined only by the convective heat transfer and heat exchange with the massif enclosing 
the stratum. 

Figures 2 and 3 show t0.s(~) without allowance for the heat exchange with the enclosing 

massif for F = 0 and 0.25, respectively. 

As ~ increases from 0 to = the fracturing m of the stratum increases monotonically from 
the value corresponding to the configuration of rock slabs and extended plates to the value 
m = I. The coolant filtering rate decreases and the cooling of the stratum slows down. At 
the same time as ~ increases the dimensions of the rock slabs grow, thus speeding up the heat 
exchange in the stratum. 

~0- 

o,5- 

0 ,~'~, ~ ,~, ,,~o,~ 

Fig. 3 
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The second factor, as we see from Figs. 2 and 3, has some effect on the heat exchange 
in the stratum only in the range 0 < ~ < i. The heat exchange slows down substantially with 
increasing ~ when ~ > i, and when ~ > I0 it is virtually independent of Fo, except for the 
range Fo < I, i.e., when the heat exchange between the rock slabs and the liquid is 
insignificant. 

The t0.9(~) curves shown in Figs. 2 and 3 correspond to variable fracturing of the 
stratum. The function tK(~, m) decreases monotonically in ~ and increases monotonically in m, 
the reason being that with a rigorous regime of coolant extraction, when the flow rates of 
the injection and developmental wells coincide the coolant filtering rate and, hence, the 
heat exchange rate on the stratum increases with growing ~ and decreasing m, since, the 
latter causes a distribution of the fixed flow rate over a smaller volume of the stratum 
occupied by the coolant. 
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